Subscribe Us

OPT. Mathematics

 

                            SEE Booster Examination

                            Optional Mathematics

                             2078(2022)

Time: 3:00 hrs.                                                                                                                         Full Marks:100

Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate full marks.

Attempt ALL the questions

                                                       Group 'A'                          [10 × 1=10]

1.   a)   What is the y- intercept of = sin X.                   

      b)   Define Sequence with an example.

2.   a)   Write the set of numbers which is continuous in number line?

      b)   Find determinant of  |-5|                                        

3.   a)   If a plane intersects a cone parallel to its generator, write the Name of section so formed?

      b)   Prove that the straight line having equation px+qy+r=0 and qx-py+s=0 are perpendicular to each other.                   

4.   a)   Express cos  , find the value of cos θ.

      b)   Express 2sin A.cos B in sum and difference form?

5.   a)   Writhe the formula for finding the angle between two vectors?

      b)   In an inversion transformation if P' is image of P and r is radius of inversion circle with Centre O, write the relation of OP. OP' and r.

 

                                                       Group 'B'                            [13×2=26]

6.   a)   If f(x) =3x+2 and g(x)=2x-1, find the function gof(x).

      b)   The arithmetic mean of m and 8 is 5, find the value of m.   

      c)   If  find Q(x) by using synthetic division method.

7.   a)   If the matrices  and   are inverse to each other, find the value of .

      b)   If D = 7, Dx = 14 and Dy = 21. Find the value of x and y by using Cramer's rule.

8.   a)   If the lines and  are parallel to each other, prove that .

      b)   Find the separate equation of: ab(x2-y2)+(a2-b2)xy=0                     

9.   a)   If cos A =  , find  the value of cos3A.

      b)   Prove that:  =tan55°

      c)   Solve:   = 0  (0° £ q £ 90°)

10. a)   If A (3, 5), B (5, -1) and C (2, 4) are the vertices of ΔABC and G is the centroid of ΔABC. Find the position vector of G.                   

      b)   In the given pentagon ABCDE, prove that:

        .

      c)   In  a continuous series 35 and  75 find the quartile deviation and its coefficient.

 

                                                       Group 'C'                                                                                 [11×4=44]

11. Solve:  x3 = 0

12.Optimize P = 5x + 4y under the given conditions: x – 2y ≤ 1, x + y ≤ 4, x≥ 0 and y≥ 0.

13. For a real valued function

      a)   Find the values of and

      b)   Is this function continuous at x = 3.

14. Solve by matrix method: 3x+5y=11 and 2x-3y=1

15. If the straight lines represented by  are perpendicular to each other, then find the value of  Also find the equation of straight lines represented by

16. Prove that:  

17. If A+B+C= , prove that:

      

18. The angles of elevation of the top of a tower observed from 49m and 64m from the foot of the tower are found to be complementary. Find the height of the tower.

19. If the matrix  transforms a unit square to the parallelogram , find the values of  m, n, p and q.

20. Find the mean deviation from median of the given data.

Class

0-10

10-20

20-30

30-40

40-50

Frequency

2

3

6

5

4

 

21. Find mean and standard deviation from the given data

Class

0-4

4-8

8-12

12-16

16-20

Frequency

10

9

12

11

8

                                                       Group 'D'                                                                                   [4×5=20]

A

B

Y

X


22. Solve graphically:

23. In the given figure the circle A with the center X passes through center Y of the circle B. If the equation of circle B is  and the coordinate of X are (-4, 5), then find the equation of circle A.

24. Prove that the diagonals of a parallelogram bisect each other.

25. The vertices of LOVE are L (2, 2), O (6, 2), V (7, 4) and E (3, 4). Find the coordinates of the vertices of the image of LOVE under the rotation of positive  about origin followed by enlargement E[(0, 0), 3]. Represent the object and images on the same graph paper.

 

 

 


Post a Comment

0 Comments